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Abstract

In this article we describe a stable partitioned algorithm that overcomes the added mass instability arising in fluid-
structure interaction of light rigid bodies and inviscid compressible flow. The new algorithm is stable even for bodies
with zero mass and zero moments of inertia. The approach is based on a local characteristic projection of the force
on the rigid body and is a natural extension of the recently developed algorithm for coupling compressible flow
and deformable bodies [1, 2, 3]. Normal mode analysis is used to prove the stability of the approximation for a
one-dimensional model problem and numerical computations confirm these results. In multiple space dimensions the
approach naturally reveals the form of the added mass tensors in the equations governing the motion of the rigid
body. These tensors, which depend on certain surface integrals of the fluid impedance, couple the translational and
angular velocities of the body. Numerical results in two space dimensions, based on the use of moving overlapping
grids and adaptive mesh refinement, demonstrate the behavior and efficacy of the new scheme. These results include
the simulation of the difficult problem of a shock impacting an ellipse of zero mass.

Keywords: fluid-structure interaction, added mass instability, moving overlapping grids, compressible fluid
flow, rigid bodies
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1. Introduction

The simulation of high-speed compressible fluids interacting with moving bodies is an important class of fluid-
structure interaction (FSI) problems. Interesting application areas include understanding the impact of shock or
detonation waves on rigid structures and embedded rigid bodies. The numerical simulation of such problems can be
difficult, and many techniques have been developed to address various facets of the problem. For a review of FSI
see [4] for example. One particularly challenging aspect has been the presence of numerical instabilities that can arise
when simulating problems with light bodies. This so-called added-mass instability is associated with the fact that the
reaction of a body to an applied force depends not only on the mass of the body but also on the fluid displaced by the
body through its motion. Traditional partitioned FSI schemes do not take into account the strong coupling between
the fluid and solid and thus can exhibit an instability whereby the over-reaction of a light solid to an applied force
from the fluid leads in turn to an even larger reaction from the fluid and so on. Fully coupled monolithic approaches
to FSI can overcome the unstable behavior but are generally more expensive, can be difficult to implement, and
may require advanced solvers or preconditioners. For compressible fluids the instability in partitioned algorithms
can often be suppressed by choosing a smaller time-step (as the analysis in this article demonstrates). However, the
stable time-step goes to zero as the mass of the body goes to zero and thus alternative approaches to removing the
instability are desirable.

In a recent series of articles, we have developed a set of stable interface approximations for partitioned solutions
procedures that couple compressible fluids and deformable bodies [1, 2, 3]. In [1, 2] the interface approximation is
based on a local characteristic analysis that results in an impedance weighted projection of the velocity and forces on
the interface. These methods ensure the stability of the partitioned FSI scheme even for light solids. In this article
we extend these ideas to the coupling of compressible fluids and rigid bodies. The key idea presented in this article
can be introduced by considering the equations of motion for a rigid body (the full set of equations are presented in
full detail in Section 2.2)

mbv̇b = F , (1)

Aω̇ = −WAω + T , (2)

where mb is the mass of the body, vb(t) is the velocity of the center of mass, ω(t) the angular velocity and A the
moment of inertia tensor. F and T are, respectively, the force and torque on the body arising from the fluid forces
on the surface of the body. From Equations (1)-(2) it would at first seem impossible to solve for vb and/or ω when
mb = 0 and/or A = 0, as the equations apparently become singular. However, from a local characteristic analysis of
the appropriate fluid-structure Riemann problem, we can determine how F and T implicitly depend on the motion
of the body,

F = −Avvvb −Avωω + F̃ , T = −Aωvvb −Aωωω + T̃ . (3)

The matrices Aij are the added-mass tensors; these are defined in terms of certain integrals of the fluid impedance
over the boundary of the rigid body (see Section 6). It is worth pointing out that the concept of added-mass has
a long history in describing the motion of embedded bodies in both compressible and incompressible flows. For the
compressible regime the recent article [5] nicely discusses the history as well as modern developments.

Using the form of Equation (3) as a starting point, we define a partitioned FSI scheme that remains stable
with a large time-step (i.e. the usual time-step restriction associated with the fluid domain in isolation) even as
mb or A go to zero, provided the added-mass tensors satisfy certain properties. This approach relies on the use of
an implicit time stepping method for the evolution of the rigid body. The new added-mass scheme is analyzed in
detail for a one-dimensional model problem consisting of a rigid body embedded in a fluid governed by the linearized
Euler equations. Both a first-order accurate upwind scheme and the second-order accurate Lax-Wendroff scheme are
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analyzed using normal mode stability theory [6]. When the rigid body is integrated with an A-stable time-stepping
method, the resulting partitioned FSI scheme is shown to be stable with a large time step even when mb = 0.

The added-mass scheme is implemented in two space dimensions using the moving overlapping grid technique
described in [7]. In this approach, local body fitted curvilinear grids are used to represent the bodies and these move
through static background grids that are often chosen to be Cartesian grids for efficiency. Adaptive mesh refinement
(AMR) is used on all grids to dynamically increase resolution locally in space and time. We solve the compressible
Euler equations on possibly moving grids in the fluid domain using a high-order extension of Goudnov’s method. The
Newton-Euler equations (with added-mass corrections) are solved for the motion of the rigid-body using an implicit
Runge Kutta scheme (in contrast to the explicit time-stepping method used previously in [7]).

In general, the added-mass scheme proposed here could be used in conjunction with any number of FSI approaches.
The treatment of moving geometry is a major component for coupling fluid flow to the motion of rigid bodies and
many techniques have been considered. One class of methods relies on a fixed underlying grid and includes, embedded
boundaries [8], immersed boundaries [9, 10], level sets [11, 12], and fictitious domain methods [13]. In these methods
a body moves through the fixed fluid mesh, and its motion is represented in the fluid as an internal boundary. A
second class of methods uses body conforming meshes and allows the mesh to deform in response to the motion of
the body. Popular in this class of methods are ALE [14, 15, 16, 17], multiblock [18], and general moving unstructured
grids [19].

The remainder of this article is structured as follows. In Section 2, the governing equations of inviscid compressible
flow for the fluid, and the Newton-Euler equations for rigid body motion are presented. Section 3 provides some
motivation for, and the derivation of, our interface projection scheme in one dimension, showing the origin of the
added-mass terms in the equation of motion for the rigid body. In Section 4 this approximation is incorporated into a
partitioned FSI scheme for a one-dimensional FSI model problem. The stability of this new added-mass scheme, as well
as the traditional coupling scheme, is analyzed using normal mode theory. Section 5 provides numerical confirmation
of the theoretical results for the one-dimensional problem, demonstrating the expected convergence rates and stability
properties. Extension of the algorithm to multiple space dimensions is presented in Section 6 showing the derivation of
added-mass tensors. The time-stepping procedure for the overlapping grid FSI algorithm is summarized in Section 7.
Results for two-dimensional problems are presented in Section 8. These include a smoothly receding rigid piston with
known solution, a smoothly accelerated ellipse which is compared to the traditional algorithm and a shock-driven
zero mass ellipse. The last example is also used to demonstrate the use of adaptive mesh refinement (AMR) and is
particularly challenging and interesting. Concluding remarks are given in Section 9. In Appendix A we derive the
exact solutions used in the numerical verification of the one-dimensiomal model problem. Finally in Appendix B we
present the form of the added mass matrices for a number of simple shapes in two and three-dimensions.

2. Rigid bodies and compressible flow in multiple space dimensions

In this section we define the governing equations for the fluid domains and the rigid bodies. The equations are
presented in three space dimensions which serves as a general model. Simplifications to one and two space dimensions,
as well as linearization, will be performed later as appropriate.

2.1. The Euler equations for an inviscid compressible fluid

We consider the evolution of a compressible inviscid fluid with an embedded rigid body. The governing equations
for the fluid domain Ω ⊂ R3 are the compressible Euler equations

∂tw +∇ · f(w) = 0, x ∈ Ω, t > 0, (4)

where w = [ρ, ρv, ρE ]T is the vector of conserved variables (density, momentum, energy), v is the velocity, and
f = [ρv, ρv⊗ v + pI, (ρE + p)v]T is the flux. The total energy is given by ρE = p/(γ − 1) + 1

2
ρ|v|2 assuming an ideal

gas with a constant ratio of specific heats.

2.2. The Newton-Euler equations for the motion of a rigid body

The equations of motion for the rigid body are the Newton-Euler equations which can be written as

ẋb = vb, (5)

mbv̇b = F , (6)

Aω̇ = −WAω + T , (7)

Ė = WE. (8)

Here mb is the mass of the body, xb(t) ∈ R3 is the position of the center of mass, and vb(t) ∈ R3 is the velocity of
the center of mass. The moment of inertia matrix A ∈ R3×3 is defined by

A(t) =

∫
B(t)

ρb(x)
[
yTyI − yyT

]
dx, y = x− xb,
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where ρb(x) defines the mass density of the body and B(t) ⊂ R3 defines the region occupied by the body. The inertia
matrix is symmetric and positive semi-definite (positive definite if ρb(x) > 0) and can be written in terms of the
orthogonal matrix E ∈ R3×3, whose columns are the principle axes of inertia, ei(t), and the diagonal matrix Λ whose
diagonal entries are the moments of inertia, Ii,

A = EΛET , E = [e1 e2 e3], Aei = Iiei, Λ = diag(I1, I2, I3), eTi ej = δij .

The angular momentum of the body is h = Aω where ω(t) ∈ R3 is the angular velocity. The matrix W in (7) is the
angular velocity matrix given by

W = Cross(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ( i.e. Wa = ω × a). (9)

The total force and torque on the body are given by

F =

∫
∂B

fs ds+ fb, (fs = surface forces, fb= body force), (10)

T =

∫
∂B

(x− xb)× fs ds+ gb, (torque), (11)

Given F(t) and T (t), along with initial conditions, xb(0), vb(0), ω(0), and E(0), equations (5)-(8) can be solved
to determine xb(t), vb(t), ω(t), and E(t) as a function of time.

The motion of a point r(t) attached to the body is given by a translation together with a rotation about the
initial center of mass,

r(t) = xb(t) +R(t)(r(0)− xb(0)),

where R(t) is the rotation matrix given by

R(t) = E(t)ET (0). (12)

The velocity of this point is

ṙ(t) = vb(t) +WR(t)(r(0)− xb(0)),

= vb(t) +W (r(t)− xb(t)),

= vb(t) + ω × (r(t)− xb(t)),

Letting y = y(r) ≡ r(t)− xb(t) it follows that the velocity of the point r can be written in the form

ṙ(t) = vb(t)− Y ω, (13)

where Y (t) is the matrix

Y = Cross(y) =

 0 −y3 y2
y3 0 −y1
−y2 y1 0

 . (14)

2.3. The coupling conditions for rigid bodies and inviscid compressible flow

On an interface between a fluid and a solid, the normal component of the fluid velocity must match the normal
component of the solid velocity (the inviscid equations allow slip in the tangential direction). Let r = r(t) denote a
point on the surface of the body B, and n = n(r) the outward normal to the body, then

nT ṙ(t) = nTv(r(t), t). (15)

In addition, the surface force per-unit-area at each point on the body is given by the local force per-unit-area exerted
by the fluid,

fs(r(t)) = −n p(r(t), t). (16)
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3. A partitioned FSI algorithm for the one-dimensional Euler equations and a rigid body –
added mass terms

In the recent series of articles [1, 2, 3], a stable interface projection scheme was developed for the problem of
coupling a compressible fluid and a deformable elastic solid of arbitrary density. The key result from [1, 2] can
be distilled from the consideration of a one-dimensional Riemann problem consisting of a linearized compressible
fluid (equations 21) on the right with state (ρ0, v0, σ0), and a linear elastic solid on the left with state (ρ̄0, v̄0, σ̄0).
Arguments based on characteristics were used to show that for positive times the interface values (vI , σI) are given
in terms of an impedance weighted average of the fluid and solid states,

vI =
z̄v̄0 + zv0
z̄ + z

+
σ0 − σ̄0

z̄ + z
, (17)

σI =
z̄−1σ̄0 + z−1σ0

z̄−1 + z−1
+

v0 − v̄0
z̄−1 + z−1

. (18)

Here z̄ = ρ̄cp is the solid impedance based on the speed of sound, cp, for compression waves in the solid, while z = ρc
is the fluid impedance based on the speed of sound, c, in the fluid. In [1, 2] it was found that using a projection to
impose (17) and (18) as interface conditions resulted in a scheme that remained stable, even in the presence of light
solids when the traditional FSI coupling scheme fails. See [1, 2, 3] for further details.

The present situation of a rigid body can be considered through a limit process where cp becomes large compared
to c, and the elastic body becomes increasingly rigid. Taking the formal limit z̄/z →∞ in equations (17)-(18), with
z fixed, results in2

vI = v̄0, (19)

σI = σ0 + z(v0 − v̄0). (20)

Thus for a rigid body, the interface surface stress is equal to the stress from the fluid plus z times the difference of the
fluid velocity and the velocity of the body. The dependence of the interface stress, σI , on the velocity of the body,
v̄0, has thus been exposed.

These interface conditions can be derived more directly by considering the Riemann-like problem, shown in Fig. 1,
that consists of a rigid body of mass mb adjacent to a compressible fluid governed by the linearized Euler equations.
Using characteristic theory, we can write an explicit equation for the motion for the rigid body in terms of the initial
conditions. This process introduces an added mass term into the equations, and the motion of the body is seen to
be well defined even when mb = 0. The equations are then written in an alternative form as an interface projection
that is localized in space and time. This form can be used to generalize the approach to multiple dimensions.

Consider then the solution to the linearized one-dimensional Euler equations for an inviscid compressible fluid,
in the moving domain x > rb(t) as shown in Fig. 1,

∂tρ+ v̂∂xρ+ ρ̂∂xv = 0

∂tv + v̂∂xv − (1/ρ̂)∂xσ = 0

∂tσ + v̂∂xσ − ρ̂ĉ2∂xv = 0

, for x > rb(t), (21)

[ρ(x, 0), v(x, 0), σ(x, 0)] = [ρ0(x), v0(x), σ0(x)]. (22)

Here σ = −p is the fluid stress. The equations have been linearized about the constant state [ρ̂, v̂, p̂]. The linearized
speed of sound is ĉ =

√
γp̂/ρ̂ and the the initial conditions are given by [ρ0(x), v0(x), σ0(x)]. The fluid is coupled to

a rigid body of mass mb whose motion is governed by Newton’s law of motion for the velocity, vb, and the position,
xb, of the center of mass,

mbv̇b = σ(rb(t), t)Ab + fb, (23)

ẋb = vb. (24)

Here Ab is the cross-sectional area of the body, fb is an external body force and rb = xb + wb/2 defines the point on
the body that lies next to the fluid (wb being the constant width of the body).

From the theory of characteristics, the characteristic variable χ = σ + zv is constant along the C− characteristic
dx/dt = −s = v̂ − ĉ. Therefore, for a point rb(t) on the body, χ(rb, t) = χ(rb + st, 0), and thus

σ(rb, t) + zv(rb, t) = σ0(rb + st) + zv0(rb + st). (25)

Using the interface condition v(rb, t) = vb(t) it follows that the stress on the body is

σ(rb, t) = σ0(rb + st) + z
(
v0(rb + st)− vb

)
. (26)

2This limit process could be quite complex and we are speaking here on informal grounds for motivational purposes.
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x

t

x = rb(t)

vb, σb

C− : σ + zv = σ0 + zv0

v0, σ0

bodyfb fluid

Figure 1: The x-t diagram for the one-dimensional fluid/rigid-body problem.

Substituting (26) into (23) gives an equation for the motion of the body that only depends on the initial data in the
fluid and the external body force,

mbv̇b = σ0(rb + st)Ab + zAb
(
v0(rb + st)− vb

)
+ fb(t), (27)

ṙb = vb. (28)

This equation can be written in the form,

mbv̇b + zAbvb = σ0(rb + st)Ab + zAbv0(rb + st) + fb(t), (29)

ṙb = vb, (30)

where the added mass term zAbvb has been moved to the left-hand side. Note that equations (29)-(30) can be used
to solve for vb even when mb = 0 (provided zAb > 0). By using an ODE integration scheme that treats the added
mass term zAbvb implicitly, equation (29) can be used to evolve the rigid body with a time step that need not go to
zero as mb goes to zero. In practical implementation, it is often beneficial to localize (26) in space and time. Using
χ(t) = χ(t− ε) along the C− characteristic and letting ε→ 0 leads to the relation

σ(rb, t) = σ(rb+, t−) + z
(
v(rb+, t−)− vb(t)

)
. (31)

Here σ(rb+, t−) and v(rb+, t−) denote the stress and velocity in the fluid at a point which lies an infinitesimal
distance backward along the C− characteristic. Equation (31) is in a form that can be used in an interface projection
strategy and can be easily generalized to a multidimensional problem as is done in Section 6. Furthermore, notice
the similarity of (31) to equation (20). This hints at the close connection between (31) and the projection schemes
evaluated in [1, 2, 3] for coupling compressible fluids and deformable bodies.

4. Normal mode stability analysis of idealized model problem

In order to understand the stability of a numerical scheme that uses the new interface conditions (31), consider
the one-dimensional model problem of a rigid body confined on either side by an inviscid compressible fluid, as shown
in Fig.2. As in [1] we can linearize and freeze coefficients about a reference state to arrive at a problem where the
equations of acoustics govern the two fluids, and Newtonian mechanics govern the motion of the solid. As shown in
Fig. 2, the body has a width of wb and its cross-sectional area is assumed to be 1. Note that the equations for the
fluids are defined in fixed reference coordinates, x < −wb/2 and x > wb/2.

More specifically, the governing equations for the fluid in the left domain are given by[
vL
σL

]
t

−
[

0 1
ρL

ρLc
2
L 0

] [
vL
σL

]
x

= 0, for x < −wb
2
, (32)

while those for the fluid in the right domain are[
vR
σR

]
t

−
[

0 1
ρR

ρRc
2
R 0

] [
vR
σR

]
x

= 0, for x >
wb
2
. (33)

The motion of the rigid body is governed by
mbv̇b = F , (34)

where the force exerted on the rigid body by the fluid is

F = σR|x=wb/2 − σL|x=−wb/2 . (35)
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fluid (acoustics) fluid (acoustics)solid (rigid body)

[
vL
σL

]
i

vb

[
vR
σR

]
i

x
−wb/2 0 wb/2

0 1 2 3 . . .0−1−2−3. . .

Figure 2: Schematic of the one-dimensional FSI model problem used in the stability analysis. A solid rigid body is embedded
between a fluid domain on the left and a fluid domain on the right. The boundaries of the rigid body are located mid-way
between the ghost points of the fluid grids with index i = 0 and the first grid point inside the domain with index i = −1 on the
left and i = 1 on the right.

The system is closed using interface conditions at x = ±wb/2 which enforce continuity of velocity, namely

vL|x=−wb/2 = vb (36)

vR|x=wb/2 = vb. (37)

Notice that the problem is posed in a moving reference frame (which we call x), and the frame attached to the rigid
body can be calculated as

x̂ = x+

∫ t

0

vb(τ) dτ.

4.1. A first-order accurate numerical discretization of the model problem

This section describes the discretization of the governing equations (32)-(34) to first-order accuracy. As in [1],
Godunov style upwind schemes will be used to discretize the fluid domains. We will analyze and demonstrate the
properties of these schemes when combined with various discrete interface conditions. The finite difference grid for
the discretization of the one-dimensional problem is outlined in Fig. 2. Note that the left and right boundaries of the
rigid body are located at the mid-point of computational cells. This choice is made for notational convenience, but
is not critical to the analysis. The grid points to the left of the rigid body are denoted by

xL,i = −wb
2

+

(
i+

1

2

)
∆xL, i = . . . ,−2,−1, 0,

and to the right by

xR,i =
wb
2

+

(
i− 1

2

)
∆xR, i = 0, 1, 2, . . . .

Ghost points, corresponding to index i = 0 for both domains, will be used to enforce the interface conditions.
Let zk = ρkck denote the acoustic impedance in domain k = L,R. The eigen-decomposition of the matrices in

(32) and (33) is given by

Ck ≡
[

0 1
ρk

ρkc
2
k 0

]
= RkΛkR

−1
k , Rk = ck

[
−1 1
zk zk

]
, Λk =

[
−ck 0

0 ck

]
, R−1

k =
1

2ckzk

[
−zk 1
zk 1

]
. (38)

Let vnk,i ≈ vk(xk,i, t
n) and σnk,i ≈ σk(xk,i, t

n) denote discrete approximations to the velocity and stress at time
tn = n∆t. We also use the notation [

vk
σk

]n
i

≡
[
vnk,i
σnk,i

]
.

The first-order accurate upwind scheme is given by[
vk
σk

]n+1

i

=

[
vk
σk

]n
i

+ ∆tRkΛ−k R
−1
k D−

[
vk
σk

]n
i

+ ∆tRkΛ+
k R
−1
k D+

[
vk
σk

]n
i

, (39)

for i = . . . ,−2,−1 on the left and for i = 1, 2 . . . on the right. The negative and positive parts of the wave speeds
are defined by

Λ−k =

[
−ck 0

0 0

]
and Λ+

k =

[
0 0
0 ck

]
, (40)

respectively. The forward and backward divided differences are defined by D+ui = (ui+1 − ui)/∆x and D−ui =
D+ui−1, where ∆x is taken for the appropriate domain.
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The methods we consider can be presented using a unified notation. Motivated by the discussion in Section 3,
the interface stresses at tn+1 for the first-order scheme are defined by

σn+1
I,L = σn+1

L,−1 + αL
(
vn+1
b − vn+1

L,−1

)
(41)

σn+1
I,R = σn+1

R,1 + αR
(
vn+1
R,1 − v

n+1
b

)
. (42)

where αL and αR are parameters that can be used to obtain various discrete interface conditions. The traditional
approach found in the literature can be described in words as applying the velocity from the solid as a boundary
condition on the fluids, and applying the stress in the fluid to derive the applied force on the body. This condition
is achieved by setting αk = 0. Our new projection interface condition is given by setting αk = zk.

The solution state in the ghost cells at tn+1 is defined to first-order accuracy by imposing continuity of the velocity
at the interfaces

vn+1
L,0 = vn+1

b , (43)

vn+1
R,0 = vn+1

b , (44)

and extrapolation of the stress to first-order accuracy as

σn+1
L,0 = σn+1

I,L , (45)

σn+1
R,0 = σn+1

I,R . (46)

The rigid body equations (34) are advanced in time with the backward Euler scheme,

mbv
n+1
b = mbv

n
b + ∆tFn+1 (47)

where the force at tn+1, Fn+1, is defined as

Fn+1 = σn+1
I,R − σ

n+1
I,L . (48)

The backward Euler method is used here in order to simplify the analysis. Used in isolation, the backward-Euler
scheme is unconditionally stable for any ∆t independent of mb provided mb > 0. We will show, however, that
the fully coupled FSI problem has a time-step restriction that depends on mb for the traditional interface coupling
scheme. For the new interface projection scheme we show that there is no dependence of the stable time step on mb.
The backward-Euler scheme is, of course, only first-order accurate. For higher-order accuracy one can use implicit
Runge-Kutta schemes, as described in Section 7 where we extend the scheme to multiple space dimensions. Note that
while implicit schemes may be more expensive per time-step than an explicit schemes, they are only used to solve
the rigid body equations which consist of just a few ODEs. As an alternative to implicit schemes, one can consider
using an explicit scheme with a sub-cycling approach (i.e. taking multiple sub-steps with a smaller value for ∆t).
Some remarks on these issues will be provided where appropriate.

In summary, to advance one time level from tn to tn+1 using the first-order accurate scheme, the following steps
can be followed

Algorithm 1.

1. Compute

[
vL
σL

]n+1

i

for i = . . . ,−2,−1 and

[
vR
σR

]n+1

i

for i = 1, 2, . . . by (39).

2. Set Fn+1 = σn+1
R,1 + αR(vn+1

R,1 − v
n+1
b )− σn+1

L,−1 − αL(vn+1
b − vn+1

L,−1), and solve (47) for vn+1
b ,

vn+1
b =

[
mb + ∆t(αL + αR)

]−1[
mbv

n
b + ∆t

(
σn+1
R,1 + αRv

n+1
R,1 − (σn+1

L,−1 − αLv
n+1
L,−1)

)]
. (49)

3. Define the ghost point values by the velocity boundary conditions (43) and (44), along with the stress extrapo-
lations (45) and (46).

4.2. Normal mode analysis of the first-order scheme

Next, we analyze the stability of the interface discretizations, and investigate how the choice of αL and αR affect
the behavior of the overall numerical method. To simplify the presentation, assume cL = cR = c, ρL = ρR = ρ,
∆xL = ∆xR = ∆x, and αL = αR = α. In addition set z = zL = zR. These assumptions are purely for convenience
and clarity, and do not materially change the results of the analysis. We pursue a stability analysis via the normal
mode theory of Gustafsson Kreiss and Sundström (GKS) [6].

As was done in [1], we seek normal mode solutions of the form[
vk
σk

]n
i

= An
[
ṽk
σ̃k

]
i

, vnb = Anṽb, for k = L,R, (50)
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where ṽk,i and σ̃k,i are bounded functions of space, and A, the amplification factor, is a complex scalar with |A| > 1.
If such a non-zero solution can be found, the approximation grows unboundedly in time. Conversely, if no such
solutions exist for A ≥ 1, (with the limit case A = 1 treated as the limit from A > 1) then the scheme is stable.
Characteristic normal modes are denoted by[

ak
bk

]
i

= R−1
k

[
ṽk
σ̃k

]
i

=
1

2cz

[
σ̃k − zṽk
σ̃k + zṽk

]
i

. (51)

Insertion of (50) into the finite difference scheme (39) leads to

AaL,i = aL,i − λ (aL,i − aL,i−1)

AbL,i = bL,i + λ (bL,i+1 − bL,i)

}
for i = . . . ,−3,−2,−1 (52)

and
AaR,i = aR,i − λ (aR,i − aR,i−1)

AbR,i = bR,i + λ (bR,i+1 − bR,i)

}
for i = 1, 2, 3, . . . (53)

where 0 < λ = c∆t/∆x < 1. Define the quantity

r =
A− 1 + λ

λ
.

We see that |r| > 1 by rewriting |r|2 > 1 in terms of the polar variables R and θ, where A = Reiθ. By simple
algebraic manipulations, |r|2 > 1 can be rewritten as

(R− 1)2 + 2λ(R− 1) + 2R(1− λ)(1− cos θ) > 0,

which is true since R > 1 and λ < 1.
For the two components on characteristics coming in from infinity, the solution to the difference equations (52)

and (53) is

aL,i = r−(i+1)aL,−1, for i = . . . ,−3,−2,−1,

bR,i = r(i−1)bR,1, for i = 1, 2, 3, . . . .

The assumption of boundedness as i→ ±∞ gives aL,i = 0 for i . . . ,−3,−2,−1, and bR,i = 0 for i = 1, 2, 3, . . .. Note
that aL,0 and bR,0 do not play a role in the difference equations (52) and (53), but their values can be determined
algebraically using the interface conditions

aL,0 =
α− z

2z
(ṽb/c− bL,−1),

bR,0 =
z − α

2z
(ṽb/c+ aR,1).

The remainder of the solution to difference equations (52) and (53) is given by

aR,i = r−iaR,0, for i = 0, 1, 2, 3, . . ., (54)

bL,i = ribL,0, for i = . . . ,−3,−2,−1, 0 . (55)

The solutions (54) and (55) are bounded because |r| > 1. The definition of the characteristic normal modes on the
interior yields [

ṽ
σ̃

]
L,i

= c

[
1
z

]
ribL,0 for i = . . . ,−3,−2,−1 (56)

and [
ṽ
σ̃

]
R,i

= c

[
−1
z

]
r−iaR,0 for i = 1, 2, 3, . . .. (57)

The three undetermined constants bL,0, aR,0, and ṽb are defined by application of the interface conditions (43)-(46)
and the rigid body integrator (47). This leads to the linear system of equations

1 +
α− z
2zr

0 −α+ z

2z

0 1 +
α− z
2zr

α+ z

2z

A∆t

r
(z − α) −A∆t

r
(z − α) mb(A− 1) + 2∆tαA


bL,0aR,0

ṽb/c

 = 0. (58)

The system (58) is an eigenvalue problem for A, in the sense that if there is an A such that the determinant of the
system is zero, then there exists a non-trivial solution of the form (50). If, furthermore, |A| > 1, then the solution
(50) grows in time.
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Theorem 1. The numerical scheme using the interior discretizations (39), interface conditions (43)-(46), rigid body
integrator (47) and projections (41)-(42) with α = z has no eigenvalues A with |A| > 1 for λ ≤ 1 and mb ≥ 0.

Proof. For α = z the eigenvalue problem (58) reduces to

1 0 −1
0 1 1
0 0 mb(A− 1) + 2∆tzA



bL,0

aR,0

ṽb/c

 = 0. (59)

The determinant is zero when A = mb/(mb + 2∆tz). By assumption, ∆t > 0 and z > 0 and so |A| < 1.

Theorem 2. The numerical scheme using the interior discretizations (39), interface conditions (43)-(46), rigid body
integrator (47) and projections (41)-(42) with α = 0 has no eigenvalues A with |A| > 1 when

∆t < mb(4− λ)/(zλ) (60)

for λ ≤ 1. Conversely, if ∆t > mb(4− λ)/(zλ), then there are eigenvalues with |A| > 1 for λ ≤ 1.

Proof. For α = 0, the eigenvalue problem (58) reduces to
1− 1

2r
0 −1

2

0 1− 1

2r

1

2

Az∆t
r

−Az∆t
r

mb(A− 1)


bL,0aR,0
ṽb/c

 = 0. (61)

The zero determinant condition is solved to give three roots A1 = 1− λ/2 and

A2,3 = 1− λ

4
− zξλ

2
±

√(
1− λ

4
− zξλ

2

)2

− 1 +
λ

2
(62)

where ξ = ∆t/mb. Clearly, |A1| < 1 for λ ≤ 1. In the case(
1− λ

4
− zξλ

2

)2

− 1 +
λ

2
< 0,

A2 and A3 are complex conjugate, and

|A2|2 = |A3|2 =

(
1− λ

4
− zξλ

2

)2

−
(

1− λ

4
− zξλ

2

)2

+ 1− λ

2
= 1− λ

2
< 1.

When A2 and A3 are real, rewriting (62) as

A2,3 = 1− (
λ

4
+
zξλ

2
)±

√(
λ

4
+
zξλ

2

)2

− zξλ

shows directly that both roots are are always < 1, hence |A| < 1 if and only if

−1 < 1− (
λ

4
+
zξλ

2
)−

√(
λ

4
+
zξλ

2

)2

− zξλ

which is equivalent to √(
λ

4
+
zξλ

2

)2

− zξλ < 2− (
λ

4
+
zξλ

2
). (63)

The necessary condition that the right hand side is positive is equivalent to

zξλ < 4− λ

2
. (64)

Assume (64) holds and square both sides of (63) to obtain

zξλ < 4− λ. (65)

Hence, |A| < 1 exactly when (65) holds. The proof is completed by observing that (65) is equivalent to (60).
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Remark: Theorem 2 means that an explicit ODE type of time step restriction exists for the coupled problem,
even though (34) is integrated by an unconditionally stable ODE integrator. In the case of light bodies, i.e., bodies
with small mb, this time step restriction can be severe. Another way to state the result is that for any fixed grid
resolution, there exists some sufficiently small mass that the scheme will give a solution that grows exponentially in
time. In fact, it is easy to see that for α = 0 and fixed ∆t, the limit of small mass yields r ∼ 1− λ/4− zλ∆t/mb and
therefore limmb→0 |A| =∞. Note however, that for finite mass the method with α = 0 is formally stable in the sense
of PDE stability, since the eigenvalues will eventually be smaller than one when ∆x and ∆t→ 0, for fixed λ.

Remark: Theorem 1 shows that the time step restriction (60) is easy to avoid by switching to the interface
conditions with α = z.

Remark: The structure of the eigenvalue problem in the proof of Theorem 1 shows why the choice α = z is
in some sense optimal. When α = z, the evolution of the rigid body equation is decoupled from the evolution of
two fluid domains and stability for any nonnegative rigid body mass is obtained. This is the primary implication of
Theorem 1. On the other hand, for α = 0, the eigenvalue problem (58) represents a coupled system and the question
of stability is summarized in Theorem 2.

Remark: For choices of α other than zero or z, the stability of the numerical scheme varies somewhat. The
determinant condition can be used to produce an expression for A, but it is somewhat difficult to interpret. We
provide no further discussion about other choices of the parameter α.

4.3. A second-order accurate numerical discretization of the model problem

We look now at the formulation and stability of a second-order version of the projection interface scheme. For
the discretization of the fluid domains we choose the second-order accurate Lax-Wendroff scheme,[

vk
σk

]n+1

i

=

[
vk
σk

]n
i

+ ∆tCkD0

[
vk
σk

]n
i

+
∆t2

2
C2
kD+D−

[
vk
σk

]n
i

k = L,R (66)

where D0 = (D+ + D−)/2 is the centered difference operator, and Ck has been defined previously in (38). The
Lax-Wendroff scheme is a good model, since many non-linear schemes of TVD type are designed to approximate
the Lax-Wendroff scheme in the parts of the computational domain where the solution is smooth. The projection
coupling conditions can be implemented to second-order accuracy as follows. Define interface stresses on the left and
right at any time tn by

σnI,L =
3σnL,−1 − σnL,−2

2
+ αL

(
vnb −

3vnL,−1 − vnL,−2

2

)
(67)

σnI,R =
3σnR,1 − σnR,2

2
+ αR

(
3vnR,1 − vnR,2

2
− vnb

)
. (68)

These are obtained by extrapolation from domain interiors, and subsequent projection. The force at any time level
tn is defined as before using (48), and a second-order accurate trapezoidal integration for the solid is then defined

mb
vn+1
b − vnb

∆t
=

1

2

(
Fn+1 + Fn

)
. (69)

The velocity from the solid is applied as a boundary condition on the fluids to second-order accuracy by setting the
average (vL,0 + vL,−1)/2 equal to vb (and similarly at the right interface), or equivalently

vnL,0 = 2vnb − vnL,−1 (70)

vnR,0 = 2vnb − vnR,1. (71)

Extrapolation of the stress to the ghost cells gives

σnL,0 = 2σnI,L − σnL,−1 (72)

σnR,0 = 2σnI,R − σnR,1. (73)

In summary, to advance one time level from tn to tn+1 using the second-order accurate scheme, the following
steps can be followed

Algorithm 2.

1. Compute

[
vL
σL

]n+1

i

for i = . . . ,−2,−1 and

[
vR
σR

]n+1

i

for i = 1, 2, . . . using (66).
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2. Define Fn+1 using the computed solution at tn+1 and solve (69) to yield

vn+1
b =

[
mb +

∆tαL
2

+
∆tαR

2

]−1 [(
mb −

∆tαL
2
− ∆tαR

2

)
vnb +

∆t

2

(
3σn+1

R,1 − σ
n+1
R,2

2
+

3σnR,1 − σnR,2
2

)
− ∆t

2

(
3σn+1

L,−1 − σ
n+1
L,−2

2
+

3σnL,−1 − σnL,−2

2

)
+

αR∆t

2

(
3vn+1
R,1 − v

n+1
R,2

2
+

3vnR,1 − vnR,2
2

)
+
αL∆t

2

(
3vn+1
L,−1 − v

n+1
L,−2

2
+

3vnL,−1 − vnL,−2

2

)]
. (74)

3. Define the ghost point values for the fluid domains using (70) – (73).

4.4. Normal mode analysis of the second-order scheme

For the analysis, we make the same assumptions as in Sec. 4.2, that the grid spacings and wave speeds are the
same on both sides of the body and that αL = αR = α. First, we decompose (66) into characteristic components,
and obtain the two scalar equations on each side of the body,

an+1
k,i = ank,i − c∆tD0a

n
k,i +

c2∆t2

2
D+D−a

n
k,i bn+1

k,i = bnk,i + c∆tD0b
n
k,i +

c2∆t2

2
D+D−b

n
k,i (75)

where k = L,R, i = . . . ,−2,−1 for k = L, and i = 1, 2, . . . for k = R. The normal modes are found by inserting
ani = Anri and bni = Anri into (75). This leads to the characteristic equation

1

2
(ν + ν2)r2 + (1−A− ν2)r +

1

2
(ν2 − ν) = 0, (76)

where ν = c∆t/∆x for the b characteristic component and ν = −c∆t/∆x for the a characteristic component. The
assumption c = cL = cR gives the same characteristic equation on either side of the body. There are four roots, two
for the −c characteristic, that we denote r−1 and r−2 , and two roots for the c characteristic, that we denote r+1 and
r+2 . It is well-known, see e.g., [6], that for the equation ut = cux under the CFL-condition λ < 1, the two roots of
(76) satisfy

|r+1 | ≤ 1− δ |A| ≥ 1

|r+2 | > 1 |A| ≥ 1,A 6= 1 (77)

r+2 = 1, A = 1

for some δ > 0 when c > 0, and

|r−1 | < 1 |A| ≥ 1,A 6= 1

r−1 = 1, A = 1 (78)

|r−2 | ≥ 1 + δ |A| ≥ 1

when c < 0. For the model problem (66), there are thus four roots. From (77), (78) and the condition of boundedness
at infinity, it follows that the r+1 and r−1 components are zero for i < 0 and that the r+2 and r−2 components are zero
for i > 0. Hence, the normal mode solutions to the left and to the right of the body can be written[

ṽ
σ̃

]
L,i

= c

[
−1
z

]
(r−2 )iaL,0 + c

[
1
z

]
(r+2 )ibL,0 for i ≤ 0 (79)

and [
ṽ
σ̃

]
R,i

= c

[
−1
z

]
(r−1 )iaR,0 + c

[
1
z

]
(r+1 )ibR,0 for i ≥ 0, (80)

respectively.
The solutions (79) and (80) inserted into the interface conditions (70), (71), (72), and (73) together with (74)
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give five equations for the five unknowns aR,0, bR,0, aL,0, bL,0, and vb. Fully written out these equations are(
1 +

1

r−2

)
aL,0 −

(
1 +

1

r+2

)
bL,0 +

2

c
vb = 0

(81)(
1 + r−1

)
aR,0 −

(
1 + r+1

)
bR,0 +

2

c
vb = 0

(82)(
1 +

1

r−2
− 2

(α
z

+ 1
)(3

2

1

r−2
− 1

2

1

(r−2 )2

))
aL,0 +

(
1 +

1

r+2
+ 2

(α
z
− 1
)(3

2

1

r+2
− 1

2

1

(r+2 )2

))
bL,0 −

2α

z

vb
c

= 0

(83)(
1 + r−1 + 2

(α
z
− 1
)(3

2
r−1 −

1

2
(r−1 )2

))
aR,0 +

(
1 + r+1 − 2

(α
z

+ 1
)(3

2
r+1 −

1

2
(r+1 )2

))
bR,0 +

2α

z

vb
c

= 0

(84)(α
z

+ 1
)(3

2

1

r−2
− 1

2

1

(r−2 )2

)
aL,0 +

(
1− α

z

)(3

2

1

r+2
− 1

2

1

(r+2 )2

)
bL,0

+
(

1− α

z

)(3

2
r−1 −

1

2
(r−1 )2

)
aR,0 −

(
1 +

α

z

)(3

2
r+1 −

1

2
(r+1 )2

)
bR,0 +

(
A− 1

A+ 1

2mb

∆tz
+

2α

z

)
vb
c

= 0

(85)

For the case α = z the system (81)-(85) becomes (
1 +

1

r−2

)
aL,0 −

(
1 +

1

r+2

)
bL,0 +

2

c
vb = 0 (86)

(
1 + r−1

)
aR,0 −

(
1 + r+1

)
bR,0 +

2

c
vb = 0 (87)(

1− 5

r−2
+

2

(r−2 )2

)
aL,0 +

(
1 +

1

r+2

)
bL,0 −

2

c
vb = 0 (88)

(
1 + r−1

)
aR,0 +

(
1− 5r+1 + 2(r+1 )2

)
bR,0 +

2

c
vb = 0 (89)(

3

r−2
− 1

(r−2 )2

)
aL,0 −

(
3r+1 − (r+1 )2

)
bR,0 +

(
A− 1

A+ 1

2mb

∆tz
+ 2

)
vb
c

= 0 (90)

Theorem 3. When |A| ≥ 1 and λ < 1, the system (86)–(90) only has the trivial solution aL,0 = bL,0 = aR,0 =
bR,0 = vb = 0. Hence, the numerical scheme using the interior discretizations (66), interface conditions (70)-(73),
rigid body integrator (74) and projections (67)-(68) has no growing modes and is stable for λ ≤ 1 and mb ≥ 0.

Proof. Adding equations (86) and (88) gives

2

(
1− 1

r−2

)2

aL,0 = 0.

Because of (78), ∣∣∣∣1− 1

r−2

∣∣∣∣ ≥ 1− 1

|r−2 |
≥ 1− 1

1 + δ
=

δ

1 + δ
> 0

and consequently, aL,0 = 0. Similarly, subtracting (87) from (89) and using (77) give bR,0 = 0. Equation (90) with
aL,0 = bR,0 = 0 gives (

A− 1

A+ 1

2mb

∆tz
+ 2

)
vb
c

= 0 (91)

A non-trivial solution exists if
A− 1

A+ 1

2mb

∆tz
+ 2 = 0,

which is equivalent to A = (mb −∆tz)/(mb + ∆tz). Assuming that for ∆t > 0, z > 0, and mb ≥ 0, it follows that
|A| < 1, and hence that the only solution of (91) when |A| ≥ 1 is vb = 0. Finally, the remaining equations(

1 +
1

r+2

)
bL,0 = 0 and (1 + r−1 )aR,0 = 0

have the unique solutions bL,0 = aR,0 = 0, because (77) and (78) exclude the possibility that r+2 = −1 or r−1 = −1
when |A| ≥ 1.
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Figure 3: Results for the one-dimensional FSI problem with mb = 1 for the first- and second-order accurate schemes. Top
left: velocity at t = 0.75. Top-right: stress at t = 0.75. Bottom left: velocity of the rigid body, vb versus time. Bottom right:
convergence of the max-norms errors. The solutions are plotted in the reference domain [−1, 0] for the left domain and [0, 1]
for the right domain with the rigid body of width wb = 0 located at x = 0.

5. Numerical demonstration of the theory for the model problem

We now present numerical results from solving the one-dimensional FSI problem introduced in Section 3. The
aim is to demonstrate the accuracy and stability of the new FSI projection algorithm For this purpose we use the
exact solution derived in Appendix A. The problem consists of an initial disturbance that moves left to right and
interacts with the rigid body. In the left domain the initial conditions for the velocity and stress are

v(x, t = 0) =
cL
2

exp
(
−β2(x− x0)2

)
, σ(x, t = 0) = −ρLc

2
L

2
exp

(
−β2(x− x0)2

)
.

The rigid body is initially at rest, and the right domain has zero initial conditions. The exact solution is defined
by (A.19), (A.7) and (A.10). Throughout this section we use ρL = 1, cL =

√
2, ρR = 1, cR =

√
3, β = 10 and

x0 = −1/2. Note that the initial conditions (A.17) and (A.18), and exact solutions (A.19), (A.7) and (A.10) may
require differentiation with respect to space and/or time in order to be used or compared with the dependent variables
of velocity and stress which we use.

5.1. Easy case: rigid body with mass one

We begin our numerical results with a case where the CFL time-step constraint in the fluids is dominant over the
explicit ODE time-step constraint for the rigid body. This is the case when

max(zL, zR) < mb min

(
cL

∆xL
,
cR

∆xR

)
,

which implies that time steps which satisfy the usual CFL stability constraint in the fluid also satisfy the stability
constraint associated with the ODE for rigid body motion. As a result, the usual coupling technique found in the
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literature presents no problem, and we are simply setting out to demonstrate that the new projection technique does
not affect the accuracy for this case.

Figure 3 shows simulation results for mb = 1 when using the first-order accurate upwind scheme for the two
fluid domains, the backward Euler integrator for the rigid body evolution equation, and the interface projection
scheme with α = z as defined by Algorithm 1. In addition we show results using the second-order accurate Lax-
Wendroff scheme for the fluid domains together with the trapezoidal rule for integration of the rigid body as defined
by Algorithm 2 with α = z.

For both cases ∆xL = ∆xR = 1/50. The exact solution and numerical approximations for v and σ are displayed
as functions of the reference coordinate x at t = 0.75, and the velocity of the rigid body is shown as a function of
time. The width of the body is taken as wb = 0 (this has no influence on the results) so that the left and right
reference domains meet at x = 0. The results from the first-order scheme show predictably smeared out solution
profiles. The results from the second-order scheme are in very good agreement with the exact solution even at this
coarse resolution. Figure 3 also presents results from a grid convergence study and shows the max-norm errors for this
problem using the two algorithms. The predicted convergence rates are convincingly demonstrated for both velocity
and stress.

Remark: For this case, one could also use the new projection scheme with a forward Euler rigid body integrator.
Simulation results for this case reveal no unexpected behavior.

Remark: For this case, traditional coupling techniques without projection would not experience exponential
blowup for the considered grids and time steps. Numerical results using the traditional scheme with α = 0 for this
case are nearly identical to those in Figure 3 and are therefore not shown.

5.2. Hard case: very light rigid body with mass 10−6

We now move to a case where the time-step given by the usual CFL consideration is sufficiently small that the
traditional algorithm with α = 0 would experience exponential growth as discussed in analyses in Section 4. However,
the time-step restriction for the new projection algorithm depends only on the time-step restrictions for each domain
separately; the coupling with the rigid body imposes no new constraint on the time-step. Therefore, the time-step
restriction for each fluid domain will be the standard CFL condition for that domain. The backward Euler and
trapezoidal methods are both A-stable and so no additional time-step constraint is imposed by the integration of the
rigid body. Consider a rigid body with mass mb = 10−6 and using the same grid spacings as before, ∆xL = ∆xR =
1/50. Figure 4 shows simulation results for this case using the two new schemes. As the figure shows, the results
from the second-order scheme are predictably superior to those from the first-order scheme. The lower right graph
in Figure 4 presents a convergence study. The expected rates of convergence are again convincingly demonstrated.

Remark: For this case, one could instead consider using an explicit rigid body integrator together with the
projection scheme. The rigid body integration must respect the ODE time-step constraint and so subcycling can be
used. It is straightforward to estimate that for ∆xL = ∆xR = 1/50, 14389 subcycles are required to obtain stability
of a forward Euler integrator. The number of subcycles scales with the time step which decreases with increasing
resolution at fixed CFL number. As a result, for ∆xL = ∆xR = 1/1280 (the finest resolution in the associated
convergence studies), only 568 subcycles are required. Such a scheme has been implemented and the results are
nearly identical to the results shown in Figure 4.

Remark: Had the traditional algorithm with α = 0 been used, the entire solution (both fluid domains and the
solid domain) would have to be integrated using a time-step which satisfies the constraint (60) or similar. For the
first-order scheme with Backward Euler rigid body integrator the constraint is (60). For other fluid discretizations
and/or rigid body integrators, the condition for stability can be determined in a manner similar to the methods used
in Theorem 2. Such a time-step restriction can be quite severe and arises as a result of using a partitioned algorithm
without projection.

5.3. Rigid body with zero mass

The new projection based FSI scheme remains well defined even when the mass of the rigid body is zero. This is
apparent from the update equation for the velocity of the rigid body, equation (49) for the first-order accurate scheme
or equation (74) for the second-order accurate scheme. The traditional partitioned algorithm is not well-defined for
this case, since it would require division by mb, and so is not an option. Figure 5 shows results for the first-order
upwind method with backward Euler rigid body integration, and the second-order upwind method with trapezoidal
rigid body integration. The exact solution is computed for mb = 0 which yields essentially the same solution used
for the two domain model problem in [1]. Figure 5 shows convergence results where again the predicted rates of
convergence are demonstrated. No significant differences from the mass mb = 10−6 case in section 5.2 are observed.

Remark: For this case it is impossible to satisfy the ODE stability constraint without using an A-stable integrator
and so explicit rigid body integration with subcycling is not an option. Put another way, the explicit algorithm
requires an infinite number of subcycles.
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Figure 4: Results for the one-dimensional FSI problem with mb = 10−6 for the first- and second-order accurate schemes. Top
left: velocity at t = 0.75. Top-right: stress at t = 0.75. Bottom left: velocity of the rigid body, vb versus time. Bottom right:
convergence of the max-norms errors. The solutions are plotted in the reference domain [−1, 0] for the left domain and [0, 1]
for the right domain with the rigid body of width wb = 0 located at x = 0.

6. The multi-dimensional interface approximation and added-mass matrices

In this section we extend the added-mass algorithm to multiple space dimensions. Formula (31) relates the
pressure and velocity of a point on the body to the nearby pressure and velocity in the fluid. This relation is in a
form amenable to multidimensional generalization. Let r = r(t) denote a point on the surface of the body B, and
n = n(r, t) the outward normal to the body, then in multiple space dimensions (31) becomes

−p(r(t), t) n = −p(r+, t−) n + z(r+, t−)
[
nT
(
v(r+, t+)− v(r, t)

)]
n,

where v(r, t) = ṙ is the velocity of the point. To clarify the notation let pr = p(r, t) and vr = v(r, t) denote the
pressure and velocity on the body at point r = r(t), and zf = z(r+, t−), pf = p(r+, t−) and vf = v(r+, t−) denote
the impedance, pressure and velocity at the adjacent point in the fluid. This gives

−prn = −pfn + zf
[
nT
(
vf − vr

)]
n.

Using equation 13 for vr = ṙ it follows that

−prn = −pfn + zf
[
nT
(
vf − vb + Y ω

)]
n. (92)

The key point of (92) is that is shows how the force exerted by the fluid on the body, fs = −prn, depends on the
velocity of the center of mass, vb, and the angular velocity, ω, of the body. Substituting (92) into the expressions (10)-
(11) for F and T gives

F =

∫
∂B

zfnnT (−vb + Y ω) ds+

∫
∂B

−pfn + zf (nTvf )n ds+ fb,

T =

∫
∂B

zfY nnT (−vb + Y ω) ds+

∫
∂B

y ×
(
− pfn + zf (nTvf )n

)
ds+ gb.
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Figure 5: Results for the one-dimensional FSI problem with mb = 0 for the first- and second-order accurate schemes. Top
left: velocity at t = 0.75. Top-right: stress at t = 0.75. Bottom left: velocity of the rigid body, vb versus time. Bottom right:
convergence of the max-norms errors. The solutions are plotted in the reference domain [−1, 0] for the left domain and [0, 1]
for the right domain with the rigid body of width wb = 0 located at x = 0.

We write F and T in the form

F = −Avvvb −Avωω + F̃ ,

T = −Aωvvb −Aωωω + T̃

where the added-mass matrices Aij are given by (using Y T = −Y , where Y is defined by (14)),

Avv =

∫
∂B

zfnnT ds, Avω =

∫
∂B

zfn(Y n)T ds, (93)

Aωv =

∫
∂B

zf (Y n)nT ds Aωω =

∫
∂B

zfY n(Y n)T ds, (94)

and F̃ and T̃ are given by

F̃ =

∫
∂B

−pfn + zf (nTvf )n ds+ fb, (95)

T̃ =

∫
∂B

y ×
(
− pfn + zf (nTvf )n

)
ds+ gb. (96)

Note that Avv and Aωω are symmetric and positive semi-definite while (Avω)T = Aωv. Let Am ∈ R6×6 denote the
composite added mass matrix (tensor),

Am =

[
Avv Avω

Aωv Aωω

]
.
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This matrix is symmetric and positive semi-definite since for any vector w = [a b]T ∈ R6, a ∈ R3, b ∈ R3

wTAmw = [a b]

[
Avv Avω

Aωv Aωω

] [
a
b

]
=

∫
zf
(
‖nTa‖2 + 2(nTa)(Y n)Tb + ‖(Y n)Tb‖2

)
ds,

=

∫
zf
(

(nTa) + (Y n)Tb
)2
ds.

The rigid body equations of motion (5)-(8) can now be written in the form
I 0 0 0
0 mbI 0 0
0 0 A 0
0 0 0 I




ẋb
v̇b
ω̇

Ė

+


0 −I 0 0
0 Avv Avω 0
0 Aωv Aωω −WA 0
0 0 0 −W




xb
vb
ω
E

 =


0

F̃
T̃
0

 . (97)

We will refer to equations (97) as the added-mass Newton-Euler equations.
Remark: By solving equations (97) with an implicit time-stepping scheme that treats the added-mass terms

implicitly, the rigid body equations can be advanced with a large time step even as mb and A approach zero, provided
Am is nonsingular. This is described in more detail in Section 7.

Remark: In Appendix B we present the form of the added-mass matrices for some common body shapes.

7. The multi-dimensional time-stepping algorithm

We make use of overlapping grids to treat multi-dimensional problems with moving rigid bodies. Narrow boundary
fitted grids lie next to the bodies and these move with the bodies (see the examples in Section 8). One or more
stationary background grids generally cover most of the domain. This approach results in high-quality grids even as
bodies undergo large motions. The time-stepping algorithm we use for FSI problems with rigid bodies is described in
detail in [7], while that for FSI problems with deforming solids is described in [2]. In [7] the Newton-Euler equations
for the rigid bodies are solved using a Leap-frog predictor step followed by a trapezoidal rule corrector step.

The FSI time stepping algorithm

Stage Condition Type Assigns

Predict(a) Predict body motion, moving grid extrapolation xpb ,v
p
b ,ω

p,Ep,Gp
i

Predict(b) Advance fluid wni , wpi , PDE wni , i ∈ II , wpi , i ∈ IB
Body(a) Compute added mass terms (93)-(96) Ap11, Ap12, Ap21, Ap22, F̃p

, T̃ p

Body(b) Advance rigid body (97) ODEs xnb ,v
n
b ,ω

n,En

Correct(a) Project fluid on body (98)-(100) projection vni , pni , ρni , i ∈ IB
Correct(b) Correct moving grid projection Gn

i

Ghost Assign fluid ghost values PDE, extrapolation wni , i ∈ IG

Figure 6: The FSI time stepping algorithm for advancing the states of the fluid and rigid body.

For the new interface algorithm developed here, we require an implicit time-stepping scheme to solve the Newton-
Euler equations with added mass terms (97) and we have chosen to use diagonally implicit Runge-Kutta (DIRK)
schemes for this purpose [20]. DIRK schemes have very nice stability and accuracy properties. The one-stage, first-
order accurate DIRK scheme, which we denote by DIRK1, is just the backward-Euler scheme. For the numerical
results in section 8 we will use a two-stage third-order accurate (A-stable) scheme, denoted by DIRK3, due to
Crouzeiux (see [20] (2.2)). In each stage of the DIRK scheme we solve an implicit approximation to (97) by Newton’s
method.

solid fluid

x

wn
−2 wn

−1 wn
0 wn

1 wn
2

. . .

Figure 7: The fluid grids for two-dimensional problems have a grid point aligned with the boundary of the rigid body. The
solution on the boundary is wn

0 , while wn
−2 and wn

−1 denote the values on the ghost points. For clarity, only one grid line is
shown in the direction normal to the boundary.

The FSI time stepping algorithm for advancing the fluid and rigid body is outlined in Figure 6. In a slight difference
from the grid arrangement used for the analysis in one-dimension as illustrated in Fig.2, the two-dimensional grids
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have a grid point aligned with the boundary of the body as shown in Fig.7. Let wn
i = (ρni ,v

n
i , p

n
i ) denote the discrete

solution in space and time for the state of the fluid at time tn, where i is a multi-index. Let (xnb ,v
n
b ,ω

n,En) denote
the discrete approximation in time to the state of the rigid body. Let xni = Gn

i denote the (moving) grid points on
the fluid grid that lies next to the body and Ġn

i the grid velocity (the fluid domain will actually be discretized with
multiple overlapping grids but for clarity we ignore these other grids in the current discussion).

Suppose that we are given the full state of the discrete solution at time tn−1 and wish to determine the state
at the next time step tn. In the first stage of the time stepping algorithm, predicted values are obtained for the
state of the solid body at the new time, (xpb ,v

p
b ,ω

p,Ep). These values can be obtained either from the Newton-Euler
equations of motion or using extrapolation in time (for a second order accurate scheme we extrapolate using the
current level and two previous time levels). From the predicted state of the body we can obtain predicted values for
the grid location, Gp

i , and grid velocity, Ġp
i ; these values are needed to advance the fluid state. Note that the grids

move as a rigid body and do not deform. In the second stage of the time stepping algorithm we obtain the new values
of the fluid state wn

i = (ρni ,v
n
i , p

n
i ) at interior grid points, i ∈ II , and predicted values, wp

i = (ρpi ,v
p
i , p

p
i ), at points

on the body surface, i ∈ IB . These values are obtained from our high-order Godunov-based upwind scheme [7]. Note
that at this stage we do not impose any boundary conditions on the fluid at the body surface. Predicted values of the
fluid on the body, i ∈ IB , can be obtained, however, since the fluid state contains ghost points, i ∈ IG (two lines of
ghost points being used for our second-order Godunov scheme). Given the predicted fluid states wp

i we can compute
the partial body forces (95)-(96) and the added mass matrices (93)-(93) using numerical integration over the surface
of the body. We then solve the added-mass Newton-Euler equations (97) (e.g. with a DIRK scheme) to determine
the corrected state of the rigid-body at the new time, (xnb ,v

n
b ,ω

n,En). The predicted state of the fluid on the solid
body is then corrected by setting the fluid velocity equal to the (local) body velocity and the fluid pressure to equal
its projected value,

vni = vnb,i, i ∈ IB , (98)

−pni = −ppi + zpnT
(
vpi − vnb,i

)
, i ∈ IB . (99)

Here the local body velocity is vb,i = vnb +Wn(rni −xnb ), where rni denotes the location of a point on the body surface,
and where Wn is defined from ωn using (9). After projecting the pressure, the density is corrected using

ρni = ρpi

(
pni /p

p
i

)1/γ
, i ∈ IB , (100)

which ensures that the entropy of the predicted state equals that of the corrected state. The fluid grid, Gn
i , and grid

velocity, Ġn
i , at the new time are corrected from the predicted values to match the new state of the rigid body. In

the final stage of the time stepping algorithm, the ghost values of fluid state that lie adjacent to the body surface are
updated using the appropriate boundary conditions and compatibility conditions, see [7, 2] for more details.

8. Numerical results in two space dimensions

In this section we present numerical results in two-dimensions that demonstrate the accuracy and stability of the
added-mass interface algorithm when applied to light rigid bodies. A pressure driven light piston problem is used to
examine the accuracy of the two-dimensional added-mass algorithm for an FSI problem with an analytic solution. A
smoothly accelerated light rigid body in the shape of an ellipse is used to evaluate the scheme for a two-dimensional
problem that includes the rotational added-mass terms. Solutions using the new added-mass algorithm are compared
to the old algorithm, which is necessarily run at a small CFL number to avoid exponential blowup. Although the
exact solution to this problem is not known, a posteriori estimates of the errors are determined from solutions on
a sequence of grids of increasing resolution. As a final example we simulate a Mach 2 shock impacting an ellipse
of zero mass and zero moment of inertia. This case demonstrates the robustness of the added-mass algorithm for a
very difficult situation. Solutions to this shock driven ellipse problem are computed at varying grid resolutions and
compared. These results include computations that use dynamic adaptive mesh refinement (AMR).

8.1. Pressure driven light piston

The geometry of the one-dimensional pressure driven piston problem is shown in Fig. 8 A compressible fluid
occupying the region x > G(t) lies adjacent to a piston of mass mb and cross-sectional area Ab. The face of the
piston that lies next to the fluid follows the curve x = G(t) as time evolves. A body force fb(t) also acts on the
piston. The exact solution to this problem can be determined for a fluid that is initially at rest and the form of
this solution is given in [7]. When fb(t) = 0, the exact solution can be determined explicitly. For general fb(t), the
case considered here, the exact solution can be accurately approximated by numerical integration of the appropriate
ordinary differential equations.

We solve the pressure driven piston problem on a two-dimensional overlapping grid denoted by G(j)p , where j
denotes the grid resolution (see Figure 8). The grid spacing in the x-direction is chosen to be ∆x(j) = 1/(10j). The
spacing in the y-direction is held fixed at ∆y = 2/10. A background Cartesian grid covers the domain [−0.5, 1.5]×[0, 1]
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Figure 8: Left: the x-t diagram for the pressure driven piston problem with a receding piston. Right: overlapping grid G(2)p for
the fluid region at t = 0.0. The green grid moves with the piston. The blue background grid does not move. The interpolation
points are marked as black dots.

−0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Pressure driven light piston, M=10−6

x

 

 

ρ
u
p

Grid hj e(j)ρ r e(j)u r e
(j)
T r

G(8)
p 1/80 6.3e-5 1.2e-4 3.1e-5

G(16)
p 1/160 1.8e-5 3.5 3.3e-5 3.7 8.8e-6 3.5

G(32)
p 1/320 4.2e-6 4.2 8.5e-6 3.9 2.2e-6 3.9

rate 1.95 1.94 1.89

Figure 9: Results for a pressure driven light piston of mass mb = 10−6. Left: computed and exact solution at t = 1. using G(8)p .
Right: maximum errors and estimated convergence rates at time t = 1.

and remains stationary. A second Cartesian grid initially covers the domain [0, 0.5] × [0, 1] and moves over time
according the piston motion.

The pressure driven piston problem is solved for a piston of mass mb = 10−6. The initial conditions for the fluid
are (ρ0, v0, p0) = (1.4, 0., 1) with γ = 1.4. The body force is chosen to be fb(t) = p0Ab(1 − 1

2
t3) which results in a

piston that smoothly recedes to the left and for which we expect the numerical solution to be second-order accurate
in the max-norm. The computed and exact solutions are shown in Fig.9 for results using grid G(8)p and these are
in excellent agreement. Figure 9 also gives the max-norm errors for solutions computed on a sequence of grids of
increasing resolution. The values in the columns labelled ”r” give the ratio of the error on the current grid to that
on previous coarser grid, a ratio of 4 being expected for a second-order accurate method. The convergence rate, β,
is estimated from a least-squares fit to the log of the error equation e(h) = Chβ . The results show that the solution
is converging at close to second-order.

8.2. Smoothly accelerated ellipse

In this example we consider a light rigid body in the shape of an ellipse that is accelerated by a smoothly varying
body force. We compare the solution from the new added-mass algorithm to that from the old algorithm, the latter
requiring a very small time step to avoid exponential blowup when the mass of the body is small.

The overlapping grid for this rotated-ellipse problem is denoted by G(j)re where j denotes the grid resolution (grid

G(1)re is shown in Figure 10). The grid consists on a stationary background Cartesian grid for the region [−2, 2]×[−2, 2],
with grid spacing ∆s(j) = 1/(10j). A narrow boundary fitted grid is located next to the surface of the elliptical body,
and this grid will move to follow the motion of the body. The surface of the body is defined by an ellipse, which
has major and minor axes of lengths 1.4 and 0.7, respectively, and which is rotated by π/4 in the counterclockwise
direction. The boundary fitted grid extends 8 grid lines in the normal direction (the grid in Figure 10 shows an
additional ghost line), and the grid spacing in the normal direction is slightly clustered near the ellipse surface. The
number of points in the tangential direction is chosen so the grid spacing is approximately ∆s(j).

The ellipse is accelerated using a body force that smoothly ramps from zero to one on the time interval [0, 1
2
] and

then smoothly ramps back to zero over the interval [ 1
2
, 1]. In particular, the body force is in the x-direction and is
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Figure 10: Accelerated ellipse. Left: overlapping grid G(1)re at time t = 0. Right: time histories of the rigid body velocity (v1, v2),
angular momentum w3, torque T3 and forces (F1, F2) for an ellipse of mass mb = 10−3 and moment of inertial I3 = 10−3 using

the old algorithm (black lines) and new algorithm (using grid G(2)re ). (T3 and F2 are scaled by a factor of 100 for graphical
purposes) . The force shown on the body does not include the contribution from the external body force.

given by

fx(t) = R(2t)−R(2t− 1), where, R(t) =


0 if t ≤ 0

35t4 − 84t5 + 70t6 − 20t7 if 0 < t < 1

1 if t ≥ 0

. (101)

Note that the ramp function R has three continuous derivatives since the first three derivatives of R(t) are zero at
t = 0 and t = 1.

We consider an an ellipse of mass mb = 10−3 and moment of inertia I3 = 10−3. The fluid is taken as an ideal gas
with γ = 1.4. The ellipse and fluid are initially at rest with the initial fluid state given by (ρ, v1, v2, p) = (1/γ, 0, 0, 1).
The smooth body force is given by (101). The boundary conditions on the Cartesian grid, which have little influence
for this problem, are inflow on the left with all variables given, outflow on the right side (all variables extrapolated)
and slip walls on the top and bottom. For comparison, we solve this problem using both the old FSI algorithm and
the new added-mass FSI algorithm. The new algorithm is run at a CFL number of 0.9. The old algorithm experiences
exponential blowup at this CFL number and is instead run at a CFL number of 1/100.

In the right-hand side of Figure 10 we show the state of the rigid body over time for the old and new algorithms.
The body initially accelerates upward and to the right as indicated by the components of the body velocity and rotates
in a counter-clockwise direction as indicated by the angular velocity. The forces on the body shown in Figure 10 do
not include the contributions from the external body force and thus represent the force exerted by the fluid on the
body. The force f1 indicates that the fluid pushes back on the body to nearly balance the external force. The results
from the old and new algorithm are nearly indistinguishable in this plot indicating that the new algorithm provides
an accurate approximation even with a time step that is nearly 100 times larger than the old algorithm.

Figure 11 shows contours of the pressure field at times t = 0.5 and t = 1.0 for both the old and new algorithms. The
accelerating body generates a forward moving wave that steepens over time and which has formed a shock by t = 1.0.
The solutions from the old and new algorithm are in excellent agreement with almost no detectable differences. For
a more quantitative evaluation of the accuracy we determine a a-posteriori error estimates by solving the problem on
a sequence of grids of increasing resolution and using the error estimation approach described in [21, 22]. Figure 12
shows the estimated max-norm errors and convergence rates at time t = 0.4 when the solution is still smooth. These
results show that the solution is converging at close to second-order accuracy. We note that for these results the slope-
limiter was turned off in the Godunov method since this slope limiter can reduce the order of accuracy. Figure 13
shows the estimated L1-norm errors and convergence rates at time t = 1.0 when the solution is no longer smooth. In
this case the results show that the solution is converging at rates close to 1, which are the expected rates for problems
with shocks. We note that the discrete L1-norm of a grid function is computed in the usual way by summing the
absolute values of the values at each grid point and dividing by the total number of grid points [21].

8.3. Shock driven zero mass ellipse

The shock driven ellipse problem consists of a Mach 2 shock that impacts an ellipse of zero mass and zero moment
of inertia. This example demonstrates the robustness of the new added-mass algorithm on a difficult problem for
which the old rigid-body FSI algorithm would fail for any time-step, no matter how small. We note that since
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Added-mass algorithm: t = 0.5

.31

1.96

p

Added-mass algorithm: t = 1.0

.18

1.59

p

Old algorithm: t = 0.5

.31

1.96

p

Old algorithm: t = 1.0

.18

1.59

p

Figure 11: Accelerated ellipse: pressure at t = 0.5 and t = 1.0 for the old algorithm running at CFL number 10−2 (bottom)

and new added-mass algorithm running at CFL number 0.9 (top) for grid G(16)re .

Grid G(j) hj e
(j)
ρ r e

(j)
u r e

(j)
v r e

(j)
p r

G(8)re 1/40 8.0e-3 5.3e-3 3.4e-3 8.3e-3

G(16)re 1/80 2.2e-3 3.7 1.4e-3 3.8 9.7e-4 3.5 2.3e-3 3.7

G(32)re 1/160 5.9e-4 3.7 3.7e-4 3.8 2.8e-4 3.5 6.2e-4 3.7

rate 1.88 1.93 1.80 1.87

Figure 12: A posteriori estimated errors (max-norm) and convergence rates for the accelerated ellipse at t = 0.4 (no slope
limiter). The scheme converges at close to second-order accuracy in the max-norm when the solution is smooth.

the mass and moments of inertial of the body are zero in the Newton-Euler equations (97), the linear and angular
velocities of the body respond immediately to ensure the net force on the body is zero; there is no damping in the
response from the body’s inertia.

The overlapping grid for this problem, Gjre is the same as that used in Section 8.2. We use adaptive mesh refinement
in some of the computations of this section. Let Gj×4

re denote the AMR grid that has a base grid Gjre with grid spacing
∆s(j) ≈ 1/(10j) together with one level of refinement grids of refinement factor 4. The effective resolution of the
AMR grid Gj×4

re is thus ∆s(j×4) ≈ 1/(40j). We note that the AMR grids are added to both the background grid and
to the component grid around the ellipse, refer to [7] for further details of the moving-grid AMR approach.

The initial conditions in the fluid consist of a shock located at x = −1 with initial state (ρ, u, v, p) =
(2.6667, 1.25, 0, 3.214256) ahead of the shock and (ρ, u, v, p) = (1, 0, 0, 1.4) behind the shock. The boundary con-
ditions are supersonic inflow (all variables specified) on the left face of the background grid and supersonic outflow
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Grid G(j) hj e
(j)
ρ r e

(j)
u r e

(j)
v r e

(j)
p r

G(8)re 1/40 2.1e-3 9.3e-4 9.6e-4 2.1e-3

G(16)re 1/80 9.9e-4 2.1 4.3e-4 2.1 4.6e-4 2.1 9.6e-4 2.2

G(32)re 1/160 4.7e-4 2.1 2.0e-4 2.1 2.2e-4 2.1 4.5e-4 2.2

rate 1.08 1.09 1.07 1.11

Figure 13: A posteriori estimated errors (L1-norm) and convergence rates for the accelerated ellipse at t = 1.0. The scheme
converges at close to first-order accuracy in the L1-norm when the solution is not smooth.

(all variables extrapolated) on the other faces of the background grid.
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Figure 14: Shock-drive ellipse: time histories of the center of mass, (x1, x2), the velocity of the center of mass, (v1, v2) and the

angular velocity w3. The colored lines are results from the coarse grid G(8)re while the black lines are results using the finer grid

G(32)re .

Figure 14 compares the time history of the rigid body dynamics from a coarse grid, G(8)re , and finer grid, G(8)re ,
computation. The velocity and angular velocity are seen to rapidly increase when the shock first hits the ellipse
just after t = 0.2. The ellipse is initially accelerated up and to the right and experiences a rapid counter-clockwise
rotation. After an initial rise, the angular velocity decreases and approximately levels off at some positive value3.
The results from the two computations are in excellent agreement.

Numerical schlieren and contours of the pressure field at different times are shown in Figure 15 (see [7] for a

definition of the numerical schlieren function). The computations were performed with AMR using the grid G(16×4)
re

(base grid G(16)re plus one refinement level of refinement ratio 4). The solution at t = 0.4 shows the ellipse has
undergone a rapid acceleration upward and to the right combined with a rapid counter clockwise rotation. The
impact of the incident shock on the ellipse causes a shock to form in the region ahead of the body. By t = 1.0, a
complex pattern of interacting shocks has formed in the regions above and below the ellipse. In Figure 16 we compare
the schlieren images of the solution at t = 1.0 from grids of different resolutions. These result show good agreement
in the basic structure of the solution, with additional fine scale features appearing as the grid is refined. This is the
expected behavior for inviscid computations.

3We note that the long time behavior of the ellipse is of interest but we do not pursue that line of investigation here.
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Figure 15: Shock driven zero mass ellipse. Schlieren images (left column) and pressure contours (right column) at times t = 0.4,

t = 0.6 and = 1.0 using grid G(16×4)
re . The block boundaries of the refinement grids are shown superimposed on the pressure

contours.
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Figure 16: Shock driven zero mass ellipse. A comparison of schlieren images of the solution at t = 1.0 computed on the coarse

grid G(32)re (left), medium grid G(16×4)
re (middle) and fine (AMR) grid G(8×4×4)

re (right).
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9. Conclusions

We have presented a stable partitioned scheme for the coupling of light rigid bodies with inviscid compressible
fluids. This new added-mass scheme, derived from an analysis of a fluid/rigid-body Riemann problem, defines the
force on the rigid body as a sum of the usual fluid surface forces (due to the pressure) plus an impedance weighted
difference of the local fluid velocity and the velocity of the rigid body. The form of the added-mass terms are thus
elucidated. The scheme was analyzed in one-dimension and shown to be well defined and stable, with a large time-
step, even when the mass of the rigid body, mb, goes to zero. In contrast the traditional FSI coupling algorithm
has a time-step restriction that goes to zero as mb approaches zero. Both a first-order accurate upwind scheme and
a second-order accurate Law-Wendroff scheme were analyzed. Numerical computations in one-dimension confirmed
the results of the theory and showed that the scheme was well behaved and accurate even when mb = 0.

The added-mass scheme was then extended to multiple space dimensions. The result was an added-mass form of
the Newton-Euler equations for rigid-body motion that included four added-mass tensors. The added-mass tensors
couple the translational and angular velocities of the body and are defined in terms surface integrals involving the
fluid impedance. Numerical results in two-dimensions were presented for both smooth and discontinuous problems.
Second-order convergence was demonstrated using a smoothly receding piston problem with known exact solution,
and a smoothly accelerated ellipse. The robustness of the scheme was demonstrated for the difficult case of a shock
impacting an ellipse with zero mass and zero moment of inertia. The solution to this problem was computed on a
sequence of grids of increasing resolution (utilizing adaptive mesh refinement), with the results on the different grids
comparing favourably.

There are a number of avenues open for follow-on work including the extension of the current scheme to three
dimensions and viscous flows. In addition, we are currently investigating approaches for coupling incompressible flow
with light bodies (both rigid and deformable).

Appendix A. An analytic solution for the one-dimensional FSI model problem

Consider the problem described in figure 2. It will greatly simplify the ensuing presentation to assume the width
of the rigid body is zero so that wb = 0. Notice that this is only done only to simplify the presentation. Solutions
for finite width are trivial to generate from the wb = 0 case. Let the displacements in the left and right domains
be defined by UL(x, t) =

∫ t
0
vL(x, τ) dτ and UR(x, t) =

∫ t
0
vR(x, τ) dτ respectively, and let the rigid body position be

given by Ub(t). Second-order wave equations

∂ttUL(x, t)− c2L∂xxUL(x, t) = 0, for x < 0 (A.1)

∂ttUR(x, t)− c2R∂xxUR(x, t) = 0, for x > 0, (A.2)

describe the evolution of UL and UR. The evolution of the rigid body position is given by the rigid body equations
of motion with the applied stress determining the force on the body

mb∂ttUb(t) = ρRc
2
R∂xUR(0, t)− ρLc2L∂xUL(0, t). (A.3)

Assume given initial conditions

UL(x, 0) = U0(x), ∂tUL(x, 0) = V0(x), for x < 0 (A.4)

UR(x, 0) = U0(x), ∂tUR(x, 0) = V0(x), for x > 0 (A.5)

Ub(0) = U0(0), ∂tUb(0) = V0(0). (A.6)

The exact solution for x < 0 can be written in terms of the d’Alembert solution as

UL(x, t) = fL(x− cLt) + gL(x+ cLt) (A.7)

where

fL(ξ) =
1

2

(
U0(ξ)− 1

cL

∫ ξ

0

V0(s) ds

)
(A.8)

gL(ξ) =


1
2

(
U0(ξ) + 1

cL

∫ ξ
0
V0(s) ds

)
for ξ < 0

Ub
(
ξ
cL

)
− fL(−ξ) else.

(A.9)

Likewise for x > 0, the solution can be written

UR(x, t) = fR(x− cRt) + gR(x+ cRt) (A.10)

26



where

fR(ξ) =


1
2

(
U0(ξ)− 1

cR

∫ ξ
0
V0(s) ds

)
for ξ > 0

Ub
(
−ξ
cR

)
− gR(−ξ) else

(A.11)

gR(ξ) =
1

2

(
U0(ξ) +

1

cR

∫ ξ

0

V0(s) ds

)
. (A.12)

For x ≤ −cLt or x ≥ cRt the solution given by the usual d’Alembert solution for the Cauchy problem,

U(x, t) =
1

2

(
U0(x− ct) + U0(x+ ct)

)
+

1

2c

∫ x+ct

x−ct
V0(s) ds,

where c = cL or c = cR for the left and right domains, respectively. For −cLt < x < cRt, the left and right solutions
couple through the rigid body. For this case, the unknown interface position Ub is therefore found as the solution to
the linear ODE

mb∂ttUb(t) + (zR + zL) ∂tUb(t) = g(t) (A.13)

where g(t) = ρRc
2
R∂xU0(cRt)− ρLc2L∂xU0(−cLt) + zRV0(cRt) + zLV0(−cLt). Solutions to the corresponding homoge-

neous ODE mb∂ttη(t) + (zR + zL) ∂tη(t) = 0 are easily found as

η1(t) =e−t(zR+zL)/mb , and η2(t) = 1.

The method of variation of parameters can be used to derive an exact solution to (A.13) as

Ub(t) = k1(t)η1(t) + k2(t)η2(t). (A.14)

The unknown functions k1(t) and k2(t) are found as

k1(t) =−
∫

η1(t)g(t)

W [η1, η2](t)
dt+ const (A.15)

k2(t) =

∫
η2(t)g(t)

W [η1, η2](t)
dt+ const (A.16)

where W [η1, η2](t) is the Wronskian of the homogeneous solutions. The integration constants are determined by the
initial conditions. For a more detailed discussion on solution methods for (A.13) refer to [23] for example.

A specific solution of the form (A.14) is determined by specifying initial conditions U0(x) and V0(x). We illustrate
with an example where an initial Gaussian pulse (of velocity and stress) moves from left to right and interacts with
the rigid body and fluid domains as time progresses. Let the initial conditions be given as

U0(x) =− 1

4

√
π erf (β(x− x0))

β
(A.17)

V0(x) =
cL
2

exp
(
−β2(x− x0)2

)
. (A.18)

Here β > 0 and x0 < 0 are parameters used to define the center and width of the initial pulse. Also notice that we
envision the pulse to originate entirely in the left domain which is the reason for the appearance of cL in the initial
condition definition. The velocity of the rigid body can be found as

U̇b(t) =
zR(cR − cL)

√
π

4cRβmb
exp

(
(zL + zR)(zL + zR − 4β2mbcR(cRt− x0))

4c2Rmb
2β2

)
[
erf

(
zL + zR − 2cRβ

2mb(cRt− x0)

2cRmbβ

)
− erf

(
zL + zR + 2cRβ

2mbx0
2cRmbβ

)]
−

zL
√
π

2βmb
exp

(
(zL + zR)(zL + zR − 4cLβ

2mb(cLt+ x0))

4c2Lmb
2β2

)
[
erf

(
zL + zR − 2cLβ

2mb(cLt+ x0)

2cLmbβ

)
− erf

(
zL + zR − 2cLβ

2mbx0
2cLmbβ

)]
+

cL
2

exp

(
−β2x20 −

(zL + zR)t

mb

)
. (A.19)

Analytic expressions for the position and acceleration are determined by integration and differentiation respectively.
Note that (A.19) is not easily evaluated numerically with standard math libraries as mb → 0. For the small mass case,
(A.19) can be evaluated using asymptotic expansion of the error functions as their arguments approaches infinity.
The desired level of accuracy can be obtained by appropriately truncation the resulting series expansion. In practice,
we find that for mb / 0.1 such a procedure should be used.
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Appendix B. Examples of added mass matrices for constant fluid impedance

In this section we illustrate the form of the added mass matrices defined by (93)-(94), for some common body
shapes when the fluid impedance is taken as constant. We denote the entries of Avv by avvij , the entries of Avω by
avωij and the entries of Aωω by aωωij .

Appendix B.1. Added-mass matrices for an ellipse

Consider a two dimensional ellipse with semi-axes of length a and b and center of mass x0 = 0. Let the fluid
impedance zf be constant. A point on the ellipse is x(θ) = [a cos(θ), b sin(θ), 0]T . The tangent to this point is

dx/dθ = [−a sin(θ), b cos(θ), 0]T /
√
a2 sin2(θ) + b2 cos2(θ). Thus

n = [b cos(θ), a sin(θ), 0]T /
√
a2 sin2(θ) + b2 cos2(θ),

y = [a cos(θ), b sin θ, 0]T ,

and

Y n = [0, 0, (a2 − b2) cos(θ) sin(θ)]T /
√
a2 sin2(θ) + b2 cos2(θ).

Thus (leaving out some zero rows and columns which do not apply in two-dimensions)

nnT =
1

a2 sin2(θ) + b2 cos2(θ)

[
b2 cos2(θ) ab cos(θ) sin(θ)

ab cos(θ) sin(θ) a2 sin2(θ)

]
, (B.1)

Y n(Y n)T =
1

a2 sin2(θ) + b2 cos2(θ)

0 0 0
0 0 0
0 0 (a2 − b2)2 cos2(θ) sin2(θ)

 . (B.2)

The increment in arclength is ds =
√
dx · dx =

√
a2 sin2(θ) + b2 cos2(θ) dθ. Thus

Avv =

[
avv11 avv12
avv21 avv22

]
=

∫ 2π

0

zf√
a2 sin2(θ) + b2 cos2(θ)

[
b2 cos2(θ) ab cos(θ) sin(θ)

ab cos(θ) sin(θ) a2 sin2(θ)

]
dθ, (B.3)

Aωω =

0 0 0
0 0 0
0 0 aωω33

 =

∫ 2π

0

zf√
a2 sin2(θ) + b2 cos2(θ)

0 0 0
0 0 0
0 0 (a2 − b2)2 cos2(θ) sin2(θ)

 dθ, (B.4)

and

Avω = (Aωv)T =

0 0 avω13
0 0 avω23
0 0 0

 =

∫ 2π

0

zf√
a2 sin2(θ) + b2 cos2(θ)

0 0 b(a2 − b2) cos2(θ) sin(θ)
0 0 a(a2 − b2) cos(θ) sin2(θ)
0 0 0

 dθ (B.5)

Values for avv11 , avv22 , and aωω33 , (which can be written in terms of elliptic integrals) for some ratios of b to a are given
in Figure B.17. The values for avv12 , avω13 and avω23 are zero for uniform zf (but can be non-zero when zf varies). Note
that for the case of a circle, a = b, avv11 = avv22 = (zf/a)πa2 where πa2 is the area of the circle. Compare this result to
that for the sphere in Section Appendix B.2.

b = a b = a/2 b = a/10 b = a/100
avv11 πzfa 1.26zfa .108zfa .0020zfa
avv22 πzfa 3.58zfa 3.96zfa 3.99zfa
aωω33 0 .581zfa

3 1.27zfa
3 1.33zfa

3

Figure B.17: Components of the added-mass matrices for an ellipse for various values of b/a with constant zf . Values for
b/a 6= 1 are approximate.
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Appendix B.2. Added-mass matrices for an ellipsoid

We consider an ellipsoid with semi axes of length a, b and c and center of mass at x0 = 0. A point on the surface
of the ellipsoid is given by

x(θ, φ) = [a sin(φ) cos(θ), b sin(φ) sin(θ), c cos(φ)]T , φ ∈ [0, π], θ ∈ [0, 2π].

From this formula it is straightforward to determine n and Y n in the formulae for the added mass matrices. For a
sphere of radius a, i.e. a = b = c, we get (4π/3 ≈ 4.18879)

Avv = zfa
2

4π/3 0 0
0 4π/3 0
0 0 4π/3

 , Avω= zfa
2

0 0 0
0 0 0
0 0 0

 , Aωω = zfa
2

0 0 0
0 0 0
0 0 0

 . (B.6)

Recall that the volume of the sphere is V = 4πa3/3 so that avvii = (zf/a)V , i = 1, 2, 3. The rotational added-mass
entries aωωii , i = 1, 2, 3 are zero since a rotating sphere exerts no force on the adjacent (inviscid) fluid.

For b = a, c = 2a, we can compute the added-mass matrix entries approximately by quadrature giving the values

Avv = zfa
2

9.254 0 0
0 9.254 0
0 0 2.971

 , Avω= zfa
2

0 0 0
0 0 0
0 0 0

 , Aωω = zfa
2

4.712 0 0
0 4.712 0
0 0 0

 . (B.7)

This ellipsoid is longest along the z-axis and has circular cross-sections for z constant. The values of avv11 and avv22
are larger than avv33 which indicates that the added mass is larger for translational motions in the x- or y-directions
compared to the z-direction. In other words is takes more force to move the ellipsoid in the x− or y−directions
compared to the z-direction. This is consistent with the shape of the ellipsoid which is longest along the z-axis and
thus has a greater effective cross-sectional area when viewed from the x− or y−directions.

For b = 2a, c = 3a, the added-mass matrix entries are given approximately by

Avv = zfa
2

32.307 0 0
0 11.023 0
0 0 5.552

 , Avω= zfa
2

0 0 0
0 0 0
0 0 0

 , Aωω = zfa
2

6.840 0 0
0 53.511 0
0 0 15.963

 . (B.8)

In this case, the translational added mass avv11 is largest, consistent with the effective cross-sectional area being largest
when the ellipsoid is viewed in the x-direction. In other words it takes more force to move the ellipsoid in the
x-direction, compared to the other directions.

Appendix B.3. Added-mass matrices for a rectangle

Consider a rectangular body of length lx, height ly, and center of mass x = 0. The added-mass matrices for
bodies with piecewise constant surfaces are easily computed, and we simply present the result.

Avv = zf

2ly 0 0
0 2lx 0
0 0 0

 , Avω= zf

0 0 0
0 0 0
0 0 0

 , Aωω = zf

0 0 0
0 0 0
0 0 1

6

(
l3x + l3y

)
 . (B.9)

Appendix B.4. Added-mass matrices for a rectangular prism

Finally, consider a rectangular prism with dimensions lx, ly, lz, and center of mass x = 0. The added-mass
matrices are

Avv = zf

2lylz 0 0
0 2lxlz 0
0 0 2lxly

 , Avω= zf

0 0 0
0 0 0
0 0 0

 , Aωω = zf

 lx6
(
l3y + l3z

)
0 0

0
ly
6

(
l3x + l3z

)
0

0 0 lz
6

(
l3x + l3y

)
 .

(B.10)
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